
Run-Time Location
Information In Delphi 2
by Vitaly Miryanov

It’s happened to us all: the user
rings up and says “Hey, this new

program you wrote for us doesn’t
work! I tried using it and up popped
a message that says there’s an error
in module bigapp.exe at some funny
address with letters and numbers
in...”. Aren’t these raw addresses a
pain? Wouldn’t it be much nicer to
have your apps provide a source
code file name and line number
where the error is located? Of
course! Well, read on...

Using out-of-the-box tools, there
are only two ways to solve this
problem. The first approach is to
create a detailed map file with full
line number information and then
manually look up the file name and
line number for an error address.
The second approach is to keep the
unchanged binary unit files
(.DCUs) and object files that were
used to build the program in order
to use the Delphi compiler’s Find
Error facility. This involves storing
a large number of files with the
potential danger of updating any of
them with a recompilation, in
which case the Find Error mode
becomes useless.

Both approaches have obvious
deficiencies so it would be nice if
the program itself contained the
source file name and line number
information embedded in the ex-
ecutable, so it could report them
when required. This is a similar
idea to Run-Time Type Information
(RTTI), so I will call it Run-Time
Location Information (RTLI). It
gives a programmer the opportu-
nity to query the source file name
and line number information for a
particular code address inside the
program at run-time. C++ program-
mers have enjoyed this kind of in-
formation for quite a while.
Although the Delphi 2 compiler
shares the same back end as the
Borland C++ compiler, RTLI is still
unavailable in Delphi.

Since the compiler does not pro-
vide it, let us find out where can we
get it ourselves. For an application
or a dynamic link library, the
Delphi compiler normally gener-
ates Delphi compiled unit files
(DCUs), an executable file and a
map file (if requested). A Delphi
compiled unit file contains the
entire information on a unit. How-
ever, not only has the format of the
DCU files never been documented,
it is also compiler version depend-
ent and DCU files do not contain all
the addresses assigned by the
linker. The executable file itself
does not provide any line number
information, but debugging infor-
mation intended for a standalone
debugger (TD32) does. It looks
very suitable at first glance. It is
already attached to the executable
file, and although the format is
version dependent the core of it
remains the same. The downside is
that it is very big: the size of the
debugging information for a mini-
mum program that uses the
Windows unit is over 300Kb! Another
disadvantage is that when you
distribute the program executable
with the debugging information
attached, you give away a lot of
information about the executable,
which might be undesirable in
some cases. Though it is possible
to use the debugging information
as raw data, transferring it to a
more suitable form, the format is
rather complicated and is subject
to change in future compiler ver-
sions. So ruling out these two
sources we end up with just one:
the map file.

Studying Delphi MAP Files
Few people look at the map files
generated for their Delphi applica-
tion, considering them either too
technical or too boring. In fact, map
files contain very useful informa-
tion which cannot be found

anywhere else. The format of the
map file is standard for all 32-bit
Borland compilers and linkers, in-
cluding Delphi, Borland C++ and
TLINK32. Listing 1 (next page) pro-
vides the source code for a simple
example and Listing 2 shows the
format of the detailed map file
generated.

The first part of a map file con-
tains a general map of segments,
which for a typical Delphi applica-
tion comprises three segments:
.text, .data and .bss. The .text
segment contains all program
code, virtual method tables, run-
time type information and con-
stants, including string literals. The
.data segment contains all initial-
ized data, both writeable typed
constants and initialized global
variables. The .bss segment his-
torically derives its name from the
DOS world, meaning Below Stack
Segment, although this is not true
for the 32-bit flat model. It contains
all uninitialized data such as unin-
itialized global variables. Besides a
name, each segment has an addi-
tional attribute called class. In real
mode, the class of the segment is
used to combine segments with dif-
ferent names in the same final seg-
ment in the executable file. In
protected mode, it is mainly used
to indicate whether the segment is
a code segment or a data one. The
class CODE is used for code seg-
ments, all other class names are
normally used for data segments.

The next section of the map file
contains a detailed map of seg-
ments. It shows smart linking in
action: only segments used by the
program are listed. This is the only
place where you can see which
units are linked into the execu-
table. For every non-zero segment
that was taken from each unit there
is an entry in the detailed map
segment. Apart from segment and
class names we can see a new

8 The Delphi Magazine Issue 22

concept: a group of segments. A
group is used to combine several
segments with different names
and/or classes into one single seg-
ment in the executable file. The
.text segment is not a part of any
group so it is separated in its own
code segment in the executable
file.

The .data and .bbs segments are
included in the data group DGROUP
so they are combined into one data
segment in the executable file. The
strange looking ACBP byte value
stands for Alignment Combination
Big inPage and the hard-wired
value of A9 means that all segments
in Delphi are public double word
aligned 32-bit segments.

The order of the code segments
in this list identifies the order in
which the initialization parts of
the units are executed. This order
might be quite confusing. For ex-
ample, consider our Foo example
program that uses three units. In
which order will the initialization
parts of the units be executed?
Judging from the Delphi documen-
tation, they will be executed from
left to right: Unit1, Unit2 then Unit3.
But in fact that is not true if, for
example, Unit1 uses Unit2 but not
Unit3. In this case the order would
be Unit2, Unit1 then Unit3.

For a complex program contain-
ing a lot of cross and circular unit
references it is almost impossible
to guess the order. So wherever the
order is important, you can easily
find it from the detailed map of
segments. You can change the
order by rearranging the uses
clause of the primary project file
and dependent units.

The next two sections of the map
file give a list of public symbols
with their addresses, sorted by
name in the first section and by
address in the second one. The
only notable exception is the
TlsLast variable that is not sorted
properly by its address, which has
a ridiculously large value. After
that there is line number informa-
tion for each unit compiled in the
{$D+} state followed by the
program entry point address.

For the purpose of our exercise
with RTLI we will be interested in
the .text segment which in Delphi

has a hard coded index of 1. The
most important of all is the line
number information, which we will
use to generate RTLI. However, in
most cases, the line information is
not enough. Some units are not
compiled in the {$D+} state, for ex-
ample the System unit. If you don’t
have the source code for these
units you cannot recompile them
with line number information en-
abled. So, in addition to line num-
ber information we will use the
detailed map of segments which
gives us a clue as to the unit in
which the address of interest is
located. To get a more precise loca-
tion we will also use the public sym-
bol table for the symbols located in
the .text segment. This might give
us an indication as to the proce-
dure or function containing the
address.

Building An RTLI Generator
First of all we need to set up the
main design goals for the RTLI
generator. RTLI should be very
compact to minimize the size
overhead in the executable. RTLI
will be retrieved only rarely, so the
lookup time is not that significant.
Another important requirement is

that functions retrieving RTLI
should not use large amounts of
memory and should be robust and
reliable, since they might be called
in critical sections of code, such as
exception handlers.

It is possible to integrate the
RTLI generator with the Delphi IDE
using the Tools API. However, for
the sake of simplicity I will imple-
ment it as a command line utility.
This also allows you to use it in
conjunction with any other com-
mand line utilities such as MAKE,
or to invoke it directly from the
Tools menu of the Delphi IDE.

The RTLI generator should
perform the following steps:
➣ Make the project with the

detailed map file information
enabled;

➣ Parse the MAP file, extracting
line number and public symbol
information, and then create a
binary file containing the
extracted information;

➣ Embed this binary file in the
executable file.

 Start Length Name Class
 0001:00000000 00000C54H .text CODE
 0002:00000000 00000070H .data DATA
 0002:00000070 0000045CH .bss BSS

Detailed map of segments

 0001:00000000 00000BF0 C=CODE S=.text G=(none) M=System ACBP=A9
 0001:00000BF0 00000010 C=CODE S=.text G=(none) M=Unit2 ACBP=A9
 0001:00000C00 00000014 C=CODE S=.text G=(none) M=Unit1 ACBP=A9
 0001:00000C14 00000010 C=CODE S=.text G=(none) M=Unit3 ACBP=A9
 0001:00000C24 0000002D C=CODE S=.text G=(none) M=Foo ACBP=A9
 0002:00000000 0000006E C=DATA S=.data G=DGROUP M=System ACBP=A9
 0002:00001000 0000045C C=BSS S=.bss G=DGROUP M=System ACBP=A9

 Address Publics by Name

 0001:000009BD @Append
 0001:00000751 @Assign
........[Skipped]........
 Address Publics by Value

 0002:FFBFE004 TlsLast
 0001:00000000 TextStart
 0001:000001F0 @_IOTest
........[Skipped]........
Line numbers for Unit2(Unit2.pas) segment .text
 8 0001:00000BF0 9 0001:00000BFF

Line numbers for Unit1(Unit1.pas) segment .text
 13 0001:00000C00 16 0001:00000C04 17 0001:00000C13

Line numbers for Unit3(Unit3.pas) segment .text
 8 0001:00000C14 9 0001:00000C23

Line numbers for Foo(foo.pas) segment .text
 5 0001:00000C24 6 0001:00000C43 7 0001:00000C48

Program entry point at 0001:00000C24

➤ Listing 2

program Foo;
uses Unit1, Unit2, Unit3;
begin
 DoSomething;
end.

➤ Listing 1

10 The Delphi Magazine Issue 22

The next sections describe these
steps in more detail.

Recompiling From
The Command Line
To make the project we need to use
the same settings that were used in
the IDE while designing the project.
How can we do that? The Delphi 2
IDE creates a <ProjectName>.DOF
file containing the compiler/linker
options. It is a plain Windows style
INI file. The Compiler, Linker and
Directories sections contain all the
settings necessary to make the pro-
ject: we just need to translate the
INI file settings to the correspond-
ing command line switches used by
the Delphi command line compiler
DCC32.EXE. There is one exception
though: the ExeDescription field in
the [Linker] section does not have
any command line equivalent. The
obvious solution is to use the
{$DESCRIPTION ’Text’} compiler
directive instead of setting the
executable file description in the
Linker page. Note that the old {$D
Description} directive from
Borland Pascal and Delphi 1 is not
present in Delphi 2 or 3, although
no compiler error is produced.

The command line compiler uses
a configuration file DCC32.CFG to
read the initial settings. Although it
is possible to override some of the
initial settings on the command
line, the directory information,
such as the unit directory search
path, is initially taken from the
DCC32.CFG file. For this reason, the
RTLI generator creates a new
DCC32.CFG file containing the con-
verted options, rather than supply-
ing them on the command line.

The part of the RTLI generator
that performs the translations of
the compiler/linker settings and
runs the command line compiler
can be invoked separately. As a
side effect, this lets us use the RTLI
generator just for recompilation of
Delphi projects. It can be very use-
ful if you have lots of projects, since
you can automatically recompile
them from a batch file, or as part of
an advanced MAKE file.

Parsing The MAP File
The parsing stage is straightfor-
ward. The RTLI information is

placed in three tables. The informa-
tion from the detailed map of seg-
ments is placed in the unit table.
The public symbol list sorted by
value is used for building the public
symbol table. The line number in-
formation is used to create the line
number table. Each table is opti-
mized to use the least possible
space. For example, instead of stor-
ing the offset information for every
public symbol, the encoded differ-
ence between the current and the
previous offset is stored. This tech-
nique uses 1 or 2 bytes for every
offset instead of the 4 bytes needed
for the offset itself. A similar ap-
proach is used with the line num-
ber information, where the
encoded line and offset differences
are stored in 1, 3, 5 or 7 bytes.

To frustrate any unhealthy de-
sire of a very sad end user to look
in the executable file and find out
the source file names and symbolic
information, all the names are
hidden by XORing them with a
variable byte sequence.

There is one important caveat I
need to add. I hit some strange
problems with the Delphi 2.00 and
2.01 compilers: on some projects
they do not produce correct line
number information in the map file.
The problem occurs in units where
a source file is included using the
{$I FileName} directive. The com-
piler reports line numbers shifted
by a random number. For example,
in a unit with 500 source lines and
250 lines in an include file that does
not generate any code, line num-
bers in the map file were reported
to start from line 600 and end with
line 1000! That is one wierd bug in
the Delphi compiler...

So, the message is: do not use the
$I compiler directive in your code.

Integrating RTLI
In The Executable
How can we add the binary RTLI file
to the executable file? The easiest
solution is just to append it to the
end of the executable. However, it
is not a good practice to do so,
since the format of the executable
file is standard and does not allow
for user defined data. To avoid
that, we will store the RTLI as a
resource file and then embed it as

a resource in the executable file, so
that we can make use of the system
functions for loading resources.
Fortunately, appending an addi-
tional resource does not change
any addresses inside the ex-
ecutable file, so our RTLI remains
valid.

The RTLI generator produces a
standard Win32 .RES file, but the
.RLI extension is used to avoid the
clash with the Delphi generated
.RES file for the project. The .RLI file
contains only one resource of type
RC_DATA.

The Delphi design environment
also uses RC_DATA resources for
storing resource streams in the
.DFM file, so to avoid potential
problems with assigning the same
name to the RC_DATA resource as
was already used by the designer,
the RC_DATA resource for RTLI is
identified by a magic number,
rather than by name.

We can use the Borland
Resource Compiler supplied with
Delphi to append the resource file
to the executable file. Easy? Not
quite. Although the resource com-
piler BRC32.EXE displays in its title
that it is a compiler/binder, in fact,
it launches TLINK32 to bind binary
resource files to the executable.
For some obscure reason TLINK32
is not shipped with Delphi, so
BRC32 does not work (a Could not
spawn program: TLINK32.EXE error
message is reported). How can we
add the resource file to the ex-
ecutable without getting into the
huge trouble of parsing and modi-
fying the complex structures of the
Win32 executable file? Why not use
the Delphi compiler to do it? In the
main source file of the project we
will include the following lines of
code:

{$IFDEF BindingRTLI}
 {$R *.RLI}
{$ENDIF}

When the RTLI generator makes
the project with the detailed map
file it does not define the Binding-
RTLI conditional symbol. After
parsing the map file, it creates the
resource file <ProjectName>.RLI
and runs the compiler again with
the BindingRTLI conditional symbol

12 The Delphi Magazine Issue 22

defined, which forces the compiler
to bind in the RTLI resource file.
Since nothing has changed in the
project, the second recompilation
leaves all the addresses in the ex-
ecutable file exactly the same as
they were reported in the map file.

The Program Interface
The LIPrgInt and LIVCLInt units
provide the interface for accessing
RTLI. LIPrgInt supplies the generic
GetLocationInfo function for re-
trieving RTLI in any program or dy-
namic link library. It takes a code
pointer as a parameter and fills a
record containing various informa-
tion extracted from RTLI, such as a
unit name, file name, line number
and names of two public symbols
between which the specified code
address is located. It is worth not-
ing that the first public symbol
identifies the procedure or func-
tion that contains the requested
address only when the unit is com-
piled in the {$D+} state. For a unit
compiled in the {$D-} state, the
map file contains a list of proce-
dures and functions declared in the
interface section only, so the two
public symbols returned are the
two closest procedures or func-
tions exposed in the interface of
the unit.

The LIVCLInt unit is especially
designed for Delphi VCL programs
or DLLs. The source for this unit is
shown in Listing 3.

The RTLIShowMessage procedure
defined in this unit is an equivalent
to the ShowException procedure
found in the Delphi SysUtils unit,
but displays more detailed infor-
mation based on RTLI. The initiali-
zation section of the LIVCLInt unit
automatically replaces the default
VCL exception message boxes with
the RTLI enabled one. In order to
do that, the OnException property
of the Application object is set to
the RTLI exception handler. Simi-
larly, the ExceptProc which is nor-
mally initialized in SysUtils is
hooked by the RTLIExceptHandler to
display detailed exception infor-
mation. Since the LIVCLInt unit
uses the SysUtils unit, the
initialization section of LIVCLInt
will be executed after the intializa-
tion of SysUtils, ensuring that the

➤ Figure 1

unit LIVCLInt;
interface
procedure RTLIShowException(ExceptObject: TObject; ExceptAddr: Pointer);
implementation
uses LIPrgInt, SysUtils, Forms, Windows;
type
 TExceptionHandlerObject = class
 constructor Create;
 procedure HandleExceptions(Sender: TObject; E: Exception);
 end;
var
 PrevInitProc: Pointer;
 ExceptionHandlerObject: TExceptionHandlerObject = nil;
procedure RTLIShowException(ExceptObject: TObject; ExceptAddr: Pointer);
var
 LocInfo: TLocInfo;
 Msg,ModuleName: String;
 Buffer: array[0..259] of Char;
begin
 GetLocationInfo(ExceptAddr, LocInfo);
 if ExceptObject is Exception then
 Msg := Exception(ExceptObject).Message
 else
 Msg := ’**Unknown**’;
 GetModuleFileName(HInstance, Buffer, SizeOf(Buffer));
 ModuleName := ExtractFileName(Buffer);
 with LocInfo do begin
 if liFileName = ’’ then
 liFileName := ’**Unknown**’;
 if liUnitName = ’’ then
 liUnitName := ’**Unknown**’;
 Msg := Format(’%s’ + ^J +
 ’Exception address %8.8x’ + ^J +
 ’Module %s, Unit %s, %8.8x - %8.8x’ + ^J +
 ’File %s line %d offset %8.8x’ + ^J +
 ’Between %s(%8.8x) and %s(%8.8x)’,
 [Msg, Integer(ExceptAddr), ModuleName, liUnitName, liUnitBegOfs,
 liUnitEndOfs, liFileName, liLineNo, liLineOfs, liPubSym1Name,
 liPubSym1Ofs, liPubSym2Name, liPubSym2Ofs]);
 end;
 MessageBox(0, PChar(Msg), ’Application Error’,
 mb_Ok or mb_IconStop or mb_TaskModal);
end;
constructor TExceptionHandlerObject.Create;
begin
 Application.OnException := HandleExceptions;
end;
procedure TExceptionHandlerObject.HandleExceptions(Sender: TObject; E: Exception);
begin
 RTLIShowException(E, ExceptAddr);
end;
procedure RTLIInitProc;
begin
 ExceptionHandlerObject := TExceptionHandlerObject.Create;
 if Assigned(PrevInitProc) then
 TProcedure(PrevInitProc);
end;
procedure RTLIExceptHandler(ExceptObject: TObject; ExceptAddr: Pointer);
begin
 RTLIShowException(ExceptObject, ExceptAddr);
 Halt(1);
end;
initialization
 PrevInitProc := InitProc;
 InitProc := @RTLIInitProc;
 ExceptProc := @RTLIExceptHandler;
finalization
 ExceptionHandlerObject.Free;
end.

➤ Listing 3

14 The Delphi Magazine Issue 22

ExceptProc variable will be set to
our RTLI exception handler and not
to the standard SysUtils one. A
typical RTLI enabled exception
message box is shown in Figure 1.

Using The RTLI Generator
The RTLI generator (LIGEN.EXE,
found in the SOURCE subdirectory
when you have unzipped the ar-
chive file on this month’s disk) can
be used either from the command
line or from the Tools menu in the
Delphi IDE. To display a list of valid
command line parameters, run the
RTLI generator with the -? com-
mand line switch. The RTLI gener-
ator takes one command line
parameter: the name of the Delphi
project file. The path can be also
specified. The extension is ignored
as the program will use the proper
extension for each file: .DPR for the
Delphi project file and .DOF for the
Delphi option file. To install the
RTLI generator on the Tools menu
use the options shown in Figure 2.

The only annoyance is that you
have to use View|Project Source
option first to bring the source
code for the project to the top edi-
tor window and then select the RTLI
Generator option from the Tools
menu. This is because the Delphi
IDE does not have a macro for get-
ting the name of the project file,
one can only ask for the name of the
file located in the topmost editor
window.

Summary
To use the RTLI generator from the
Delphi IDE all you need to do is:
➣ Install RTLI Generator on the

Delphi 2 Tools with the parame-
ters shown in Figure 2;

➣ Add the LIVCLInt unit (or any
other unit that you might imple-
ment which makes use of RTLI)
to the uses clause of your pro-
ject and make the source file
accessible to the compiler (in-
clude the path to it in the
Project| Options | Directories
|Search Directories if this is
required);

➣ Add the {$IFDEF BindingRTLI}
{*.RLI} {$ENDIF} line to the
source code for the project;

➣ Select View|Project Source;
➣ Select Tools|RTLI generator.
It is important to note that after
you produce the final executable
containing RTLI you should not de-
bug it using the IDE debugger or
run it from the IDE. If you do so, the
IDE compiler will recompile the
project first and as a result RTLI
will be lost. As RTLI is intended to
help find the exact source of errors
when your application is in the
hands of the end users, this
presents no problem.

And remember that you should
not use the $I compiler directive in
your code, to prevent the problem
with incorrect line numbers
mentioned earlier.

Delphi 1 And 3?
Although this article is about
Delphi 2, I do not see any serious
reasons why RTLI cannot be imple-
mented for Delphi 1. There are a
number of difficulties though. In
order to implement it properly for
Delphi 1, it is necessary to take into
consideration the segment part of
the address as well as the offset
one, so the internal structures and
encoding mechanism should be
slightly modified. The translation

of the physical segment selectors
to logical segment numbers can be
performed by reading the word at
offset 0 in this segment, which
gives the logical number of the
segment. Also the formats of 16-bit
map and resource files are differ-
ent from their 32-bit counterparts.

On the other hand, the RTLI
generator does work with Delphi 3,
you just need to include the Delphi
3 BIN directory in the PATH environ-
ment variable. The only shortcom-
ing is that new features of the
Delphi compiler not available in
Delphi 2 are not supported. For this
reason RTLI for packages is not
available. This might be a subject
for a future article...

Vitaly Miryanov is originally from
the Ukraine and is the author of
the Virtual Pascal for OS/2 Delphi-
alike compiler, now marketed by
fPrint (UK) Ltd, for whom he now
works on this and other projects.
Contact Vitaly as vitaly@ibm.net

➤ Figure 2

June 1997 The Delphi Magazine 15

	Studying Delphi MAP Files
	Building An RTLI Generator
	Recompiling From The Command Line
	Parsing The MAP File
	Integrating RTLI In The Executable
	The Program Interface
	Using The RTLI Generator
	Summary
	Delphi 1 And 3?

